Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
Drug Des Devel Ther ; 18: 133-159, 2024.
Article En | MEDLINE | ID: mdl-38283137

Purpose: Alzheimer's disease (AD) is the most common neurodegenerative disease, and its multifactorial nature increases the difficulty of medical research. To explore an effective treatment for AD, a series of novel tacrine-selegiline hybrids with ChEs and MAOs inhibitory activities were designed and synthesized as multifunctional drugs. Methods: All designed compounds were evaluated in vitro for their inhibition of cholinesterases (AChE/BuChE) and monoamine oxidases (MAO-A/B) along with their blood-brain barrier permeability. Then, further biological activities of the optimizing compound 7d were determined, including molecular model analysis, in vitro cytotoxicity, acute toxicity studies in vivo, and pharmacokinetic and pharmacodynamic property studies in vivo. Results: Most synthesized compounds demonstrated potent inhibitory activity against ChEs/MAOs. Particularly, compound 7d exhibited good and well-balanced activity against ChEs (hAChE: IC50 = 1.57 µM, hBuChE: IC50 = 0.43 µM) and MAOs (hMAO-A: IC50 = 2.30 µM, hMAO-B: IC50 = 4.75 µM). Molecular modeling analysis demonstrated that 7d could interact simultaneously with both the catalytic active site (CAS) and peripheral anionic site (PAS) of AChE in a mixed-type manner and also exhibits binding affinity towards BuChE and MAO-B. Additionally, 7d displayed excellent permeability of the blood-brain barrier, and under the experimental conditions, it elicited low or no toxicity toward PC12 and BV-2 cells. Furthermore, 7d was not acutely toxic in mice at doses up to 2500 mg/kg and could improve the cognitive function of mice with scopolamine-induced memory impairment. Lastly, 7d possessed well pharmacokinetic characteristics. Conclusion: In light of these results, it is clear that 7d could potentially serve as a promising multi-functional drug for the treatment of AD.


Alzheimer Disease , Neurodegenerative Diseases , Taurine/analogs & derivatives , Mice , Animals , Tacrine/pharmacology , Tacrine/chemistry , Tacrine/therapeutic use , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Cholinesterases/metabolism , Selegiline/pharmacology , Selegiline/therapeutic use , Monoamine Oxidase/metabolism , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Neurodegenerative Diseases/drug therapy , Monoamine Oxidase Inhibitors/pharmacology , Monoamine Oxidase Inhibitors/chemistry , Acetylcholinesterase/metabolism , Drug Design , Structure-Activity Relationship , Amyloid beta-Peptides
2.
Bioorg Chem ; 143: 107026, 2024 Feb.
Article En | MEDLINE | ID: mdl-38103330

A series of novel hybrid compounds were designed, synthesized, and utilized as multi-target drugs to treat Alzheimer's disease (AD) by connecting capsaicin and tacrine moieties. The biological assays indicated that most of these compounds demonstrated strong inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities with IC50 values in the nanomolar, as well as good blood-brain barrier permeability. Among the synthesized hybrids, compound 5s displayed the most balanced inhibitory effect on hAChE (IC50 = 69.8 nM) and hBuChE (IC50 = 68.0 nM), and exhibited promising inhibitory activity against ß-secretase-1 (BACE-1) (IC50 = 3.6 µM). Combining inhibition kinetics and molecular model analysis, compound 5s was shown to be a mixed inhibitor affecting both the catalytic active site (CAS) and peripheral anionic site (PAS) of hAChE. Additionally, compound 5s showed low toxicity in PC12 and BV2 cell assays. Moreover, compound 5s demonstrated good tolerance at the dose of up to 2500 mg/kg and exhibited no hepatotoxicity at the dose of 3 mg/kg in mice, and it could effectively improve memory ability in mice. Taken together, these findings suggest that compound 5s is a promising and effective multi-target agent for the potential treatment of AD.


Alzheimer Disease , Tacrine , Mice , Animals , Tacrine/chemistry , Alzheimer Disease/drug therapy , Capsaicin/pharmacology , Capsaicin/therapeutic use , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Acetylcholinesterase/metabolism , Amyloid beta-Peptides , Molecular Docking Simulation , Drug Design , Structure-Activity Relationship
3.
FASEB J ; 38(1): e23369, 2024 01.
Article En | MEDLINE | ID: mdl-38100642

The human cardiovascular system has evolved to accommodate the gravity of Earth. Microgravity during spaceflight has been shown to induce vascular remodeling, leading to a decline in vascular function. The underlying mechanisms are not yet fully understood. Our previous study demonstrated that miR-214 plays a critical role in angiotensin II-induced vascular remodeling by reducing the levels of Smad7 and increasing the phosphorylation of Smad3. However, its role in vascular remodeling evoked by microgravity is not yet known. This study aimed to determine the contribution of miR-214 to the regulation of microgravity-induced vascular remodeling. The results of our study revealed that miR-214 expression was increased in the forebody arteries of both mice and monkeys after simulated microgravity treatment. In vitro, rotation-simulated microgravity-induced VSMC migration, hypertrophy, fibrosis, and inflammation were repressed by miR-214 knockout (KO) in VSMCs. Additionally, miR-214 KO increased the level of Smad7 and decreased the phosphorylation of Smad3, leading to a decrease in downstream gene expression. Furthermore, miR-214 cKO protected against simulated microgravity induced the decline in aorta function and the increase in stiffness. Histological analysis showed that miR-214 cKO inhibited the increases in vascular medial thickness that occurred after simulated microgravity treatment. Altogether, these results demonstrate that miR-214 has potential as a therapeutic target for the treatment of vascular remodeling caused by simulated microgravity.


MicroRNAs , Weightlessness , Humans , Mice , Animals , Muscle, Smooth, Vascular/metabolism , MicroRNAs/metabolism , Vascular Remodeling/genetics , Aorta/metabolism , Myocytes, Smooth Muscle/metabolism
4.
iScience ; 26(12): 108556, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38125015

Spaceflight is physically demanding and can negatively affect astronauts' health. It has been shown that the human gut microbiota and cardiac function are affected by spaceflight and simulated spaceflight. This study investigated the effects of the gut microbiota on simulated spaceflight-induced cardiac remodeling using 10° of head-down bed rest (HDBR) in rhesus macaques and 30° of hindlimb unloading (HU) in mice. The gut microbiota, fecal metabolites, and cardiac remodeling were markedly affected by HDBR in macaques and HU in mice, cardiac remodeling in control mice was affected by the gut microbiota of HU mice and that of HU mice was protected by the gut microbiota of control mice, and there was a correlation between cardiac remodeling and the gut microbial-derived metabolite trimethylamine N-oxide. These findings suggest that spaceflight can affect cardiac remodeling by modulating the gut microbiota and fecal metabolites.

5.
BMC Surg ; 23(1): 349, 2023 Nov 16.
Article En | MEDLINE | ID: mdl-37974183

BACKGROUND: Laparoscopic pancreaticoduodenectomy(LPD) has become the goal of lots of minimally invasive surgical centers in recent years. Postoperative pancreatic fistula(POPF) is still the barrier to attaining the above goal. Thus, improving anastomosis techniques to reduce the rate of POPF has been a hotspot of surgery. Blumgart pancreaticojejunostomy is considered one of the best anastomosis procedures, with low rates of POPF. However, the original Blumgart pancreaticojejunostomy method is not easy for laparoscopic operation. In consequence, we modified a Blumgart pancreaticojejunostomy technique with a simple and practicable procedure and applied to LPD. METHODS: We collected and retrospectively analyzed the perioperative clinical data of patients who underwent modified Blumgart anastomosis from February 2017 to September 2022. The above patients included 53 cases in open pancreaticojejunostomy(OPD) and 58 cases in LPD. After propensity score matching, 44 cases were included for comparison in each group. RESULTS: After propensity score matching, the average time for pancreaticojejunostomy was about 30 min in the LPD group. The Clinically relevant POPF(CR-POPF) rate was 9.1%. The length of postoperative hospitalization was 13.1 days. Compared with the OPD group, The CR-POPF rate in the LPD group are not significant differences. But the postoperative length of hospital stay was significantly shorter in the LPD group. Besides, there were no other severely postoperative complications between two groups. CONCLUSION: The modified Blumgart anastomosis technique applied to LPD in our Center not only has simple and convenient properties but also low rate of CR-POPF. And this method may be a good choice for surgeons to begin to carry out LPD.


Laparoscopy , Pancreaticoduodenectomy , Humans , Pancreaticoduodenectomy/methods , Retrospective Studies , Anastomosis, Surgical/methods , Pancreaticojejunostomy/methods , Pancreatic Fistula/etiology , Laparoscopy/methods , Postoperative Complications/epidemiology , Postoperative Complications/prevention & control , Postoperative Complications/etiology
6.
Bone Res ; 11(1): 53, 2023 10 23.
Article En | MEDLINE | ID: mdl-37872163

Bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation and osteoblast function play critical roles in bone formation, which is a highly regulated process. Long noncoding RNAs (lncRNAs) perform diverse functions in a variety of biological processes, including BMSC osteogenic differentiation. Although several studies have reported that HOX transcript antisense RNA (HOTAIR) is involved in BMSC osteogenic differentiation, its effect on bone formation in vivo remains unclear. Here, by constructing transgenic mice with BMSC (Prx1-HOTAIR)- and osteoblast (Bglap-HOTAIR)-specific overexpression of HOTAIR, we found that Prx1-HOTAIR and Bglap-HOTAIR transgenic mice show different bone phenotypes in vivo. Specifically, Prx1-HOTAIR mice showed delayed bone formation, while Bglap-HOTAIR mice showed increased bone formation. HOTAIR inhibits BMSC osteogenic differentiation but promotes osteoblast function in vitro. Furthermore, we identified that HOTAIR is mainly located in the nucleus of BMSCs and in the cytoplasm of osteoblasts. HOTAIR displays a nucleocytoplasmic translocation pattern during BMSC osteogenic differentiation. We first identified that the RNA-binding protein human antigen R (HuR) is responsible for HOTAIR nucleocytoplasmic translocation. HOTAIR is essential for osteoblast function, and cytoplasmic HOTAIR binds to miR-214 and acts as a ceRNA to increase Atf4 protein levels and osteoblast function. Bglap-HOTAIR mice, but not Prx1-HOTAIR mice, showed alleviation of bone loss induced by unloading. This study reveals the importance of temporal and spatial regulation of HOTAIR in BMSC osteogenic differentiation and bone formation, which provides new insights into precise regulation as a target for bone loss.


MicroRNAs , RNA, Long Noncoding , Animals , Humans , Mice , Bone and Bones/metabolism , Cell Differentiation/genetics , Mice, Transgenic , MicroRNAs/genetics , Osteogenesis/genetics , RNA, Long Noncoding/genetics
7.
Chem Biol Drug Des ; 102(2): 316-331, 2023 08.
Article En | MEDLINE | ID: mdl-37156601

Celastrol has been identified as a potential candidate for anticancer drug development. In this study, 28 novel celastrol derivatives with C-6 sulfhydryl substitution and 20-substitution were designed and synthesized, and their antiproliferative activity against human cancer cells and non-malignant human cells was evaluated, with cisplatin and celastrol being used as controls. The results showed that most of the derivatives had enhanced in vitro anticancer activity compared to the parent compound celastrol. Specifically, derivative 2f demonstrated the most potent inhibitory potential and selectivity against HOS with an IC50 value of 0.82 µM. Our study provides new insights into the structure-activity relationship of celastrol and suggests that compound 2f may be a promising drug candidate for the treatment of osteosarcoma.


Antineoplastic Agents , Triterpenes , Humans , Molecular Structure , Triterpenes/pharmacology , Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Cell Proliferation , Dose-Response Relationship, Drug , Cell Line, Tumor , Drug Design
8.
Commun Biol ; 6(1): 407, 2023 04 13.
Article En | MEDLINE | ID: mdl-37055517

Mechanical force loading is essential for maintaining bone homeostasis, and unloading exposure can lead to bone loss. Osteoclasts are the only bone resorbing cells and play a crucial role in bone remodeling. The molecular mechanisms underlying mechanical stimulation-induced changes in osteoclast function remain to be fully elucidated. Our previous research found Ca2+-activated Cl- channel Anoctamin 1 (Ano1) was an essential regulator for osteoclast function. Here, we report that Ano1 mediates osteoclast responses to mechanical stimulation. In vitro, osteoclast activities are obviously affected by mechanical stress, which is accompanied by the changes of Ano1 levels, intracellular Cl- concentration and Ca2+ downstream signaling. Ano1 knockout or calcium binding mutants blunts the response of osteoclast to mechanical stimulation. In vivo, Ano1 knockout in osteoclast blunts loading induced osteoclast inhibition and unloading induced bone loss and. These results demonstrate that Ano1 plays an important role in mechanical stimulation induced osteoclast activity changes.


Chloride Channels , Osteoclasts , Anoctamin-1/genetics , Anoctamin-1/metabolism , Chloride Channels/genetics , Osteoclasts/metabolism , Signal Transduction/physiology
9.
Bioorg Chem ; 130: 106224, 2023 01.
Article En | MEDLINE | ID: mdl-36332315

Cholinesterase and monoamine oxidase are potential targets for the therapy of Alzheimer's disease. A series of novel AP2238-clorgiline hybrids as multi-target agents were designed, synthesized and investigated in vitro for their inhibition of cholinesterases and monoamine oxidases. Many compounds displayed balanced and good inhibitory activity against AChE, BuChE and MAO-B with an obvious selective inhibitory effect on MAO-B. Among them, Compound 5l showed the most balanced potency to inhibit ChEs (eeAChE: IC50 = 4.03 ± 0.03 µM, eqBuChE: IC50 = 5.64 ± 0.53 µM; hAChE: IC50 = 8.30 ± 0.04 µM, hBuChE: IC50 = 1.91 ± 0.06 µM) and hMAO-B (IC50 = 3.29 ± 0.09 µM). Molecular modeling and kinetic studies showed that 5l was a mixed inhibitor for both AChE and BuChE, and a competitive MAO-B inhibitor. Compound 5l exhibited no toxicity to PC12 and BV-2 cells at 12.5 µM and no acute toxicity at a dosage of 2500 mg/kg. Moreover, 5l can improve the memory function of mice with scopolamine-induced memory impairment and have an excellent ability to cross the blood-brain barrier. Overall, these findings suggested that compound 5l could be deemed as a promising, balanced multi-target drug candidate against Alzheimer's disease.


Alzheimer Disease , Animals , Mice , Alzheimer Disease/drug therapy , Clorgyline/therapeutic use , Cholinesterase Inhibitors , Kinetics , Drug Design , Monoamine Oxidase Inhibitors , Monoamine Oxidase/metabolism , Cholinesterases/metabolism , Acetylcholinesterase/metabolism , Structure-Activity Relationship
10.
Front Surg ; 9: 937682, 2022.
Article En | MEDLINE | ID: mdl-36117840

Intraductal papillary mucinous neoplasm (IPMN) of the pancreas is one type of pancreatic cystic neoplasm. IPMNs can be classified into three types: main duct-IPMN (MD-IPMN), branch duct-IPMN (BD-IPMN), and mixed type-IPMN (MT-IPMN). It is universally accepted by most surgeons that patients who suffered from MD-IPMN with a high risk of malignant transformation should undergo surgical resection. However, a consensus on the best surgical strategy for MD-IPMN located in the pancreatic neck has still eluded the surgical community worldwide. Recently, one patient suffering from this condition in our Minimally Invasive Pancreas Center underwent a successful surgical procedure. In this case report, we performed a laparoscopic central pancreatectomy for this patient. During this surgical procedure, we used a method of end-to-end anastomosis reconstruction through a pigtail-tube-stent placement of the pancreatic duct. Before the construction of the remnant pancreas, the surgical margins of the frozen section should be negative. After surgery, the outcome of this case was satisfactory. No complications such as postoperative hemorrhage, abdominal infection, pancreatitis, delayed gastric emptying, and clinically relevant postoperative pancreatic fistula occurred, which demonstrated that this surgical strategy could achieve a good clinical therapeutic effect for the pancreatic neck MD-IPMN. The result of postoperative routine pathology confirmed the diagnosis of MD-IPMN. The pathological features also showed that there was a high degree of hyperplasia in the local epithelium, which indicated the necessity of surgical treatment.

11.
Front Bioeng Biotechnol ; 10: 850303, 2022.
Article En | MEDLINE | ID: mdl-35528209

As hematopoietic stem cells can differentiate into all hematopoietic lineages, mitigating the damage to hematopoietic stem cells is important for recovery from overdose radiation injury. Cells in bone marrow microenvironment are essential for hematopoietic stem cells maintenance and protection, and many of the paracrine mediators have been discovered in shaping hematopoietic function. Several recent reports support exosomes as effective regulators of hematopoietic stem cells, but the role of osteoblast derived exosomes in hematopoietic stem cells protection is less understood. Here, we investigated that osteoblast derived exosomes could alleviate radiation damage to hematopoietic stem cells. We show that intravenous injection of osteoblast derived exosomes promoted WBC, lymphocyte, monocyte and hematopoietic stem cells recovery after irradiation significantly. By sequencing osteoblast derived exosomes derived miRNAs and verified in vitro, we identified miR-21 is involved in hematopoietic stem cells protection via targeting PDCD4. Collectively, our data demonstrate that osteoblast derived exosomes derived miR-21 is a resultful regulator to radio-protection of hematopoietic stem cells and provide a new strategy for reducing radiation induced hematopoietic injury.

12.
Nat Commun ; 13(1): 2899, 2022 05 24.
Article En | MEDLINE | ID: mdl-35610255

Osteoclast over-activation leads to bone loss and chloride homeostasis is fundamental importance for osteoclast function. The calcium-activated chloride channel Anoctamin 1 (also known as TMEM16A) is an important chloride channel involved in many physiological processes. However, its role in osteoclast remains unresolved. Here, we identified the existence of Anoctamin 1 in osteoclast and show that its expression positively correlates with osteoclast activity. Osteoclast-specific Anoctamin 1 knockout mice exhibit increased bone mass and decreased bone resorption. Mechanistically, Anoctamin 1 deletion increases intracellular Cl- concentration, decreases H+ secretion and reduces bone resorption. Notably, Anoctamin 1 physically interacts with RANK and this interaction is dependent upon Anoctamin 1 channel activity, jointly promoting RANKL-induced downstream signaling pathways. Anoctamin 1 protein levels are substantially increased in osteoporosis patients and this closely correlates with osteoclast activity. Finally, Anoctamin 1 deletion significantly alleviates ovariectomy induced osteoporosis. These results collectively establish Anoctamin 1 as an essential regulator in osteoclast function and suggest a potential therapeutic target for osteoporosis.


Anoctamin-1/metabolism , Bone Resorption , Osteoporosis , Animals , Bone Resorption/metabolism , Female , Humans , Mice , Mice, Inbred C57BL , NFATC Transcription Factors/metabolism , Osteoclasts/metabolism , Osteogenesis/genetics , Osteoporosis/metabolism , Ovariectomy , RANK Ligand/genetics , RANK Ligand/metabolism
13.
Bone Res ; 10(1): 18, 2022 Feb 24.
Article En | MEDLINE | ID: mdl-35210394

Mechanical stimulation plays an important role in bone remodeling. Exercise-induced mechanical loading enhances bone strength, whereas mechanical unloading leads to bone loss. Increasing evidence has demonstrated that long noncoding RNAs (lncRNAs) play key roles in diverse biological, physiological and pathological contexts. However, the roles of lncRNAs in mechanotransduction and their relationships with bone formation remain unknown. In this study, we screened mechanosensing lncRNAs in osteoblasts and identified Neat1, the most clearly decreased lncRNA under simulated microgravity. Of note, not only Neat1 expression but also the specific paraspeckle structure formed by Neat1 was sensitive to different mechanical stimulations, which were closely associated with osteoblast function. Paraspeckles exhibited small punctate aggregates under simulated microgravity and elongated prolate or larger irregular structures under mechanical loading. Neat1 knockout mice displayed disrupted bone formation, impaired bone structure and strength, and reduced bone mass. Neat1 deficiency in osteoblasts reduced the response of osteoblasts to mechanical stimulation. In vivo, Neat1 knockout in mice weakened the bone phenotypes in response to mechanical loading and hindlimb unloading stimulation. Mechanistically, paraspeckles promoted nuclear retention of E3 ubiquitin ligase Smurf1 mRNA and downregulation of their translation, thus inhibiting ubiquitination-mediated degradation of the osteoblast master transcription factor Runx2, a Smurf1 target. Our study revealed that Neat1 plays an essential role in osteoblast function under mechanical stimulation, which provides a paradigm for the function of the lncRNA-assembled structure in response to mechanical stimulation and offers a therapeutic strategy for long-term spaceflight- or bedrest-induced bone loss and age-related osteoporosis.

14.
Chem Commun (Camb) ; 58(5): 653-656, 2022 Jan 13.
Article En | MEDLINE | ID: mdl-34918722

The defects of a perovskite film were first passivated by two dimensional ZnIn2S4 nanosheets, the non-radiation recombination at interfaces was suppressed and the contact of the perovskite film with water vapour in the air was avoided, resulting in a high efficiency of 20.55%.

15.
Front Cell Dev Biol ; 9: 739944, 2021.
Article En | MEDLINE | ID: mdl-34733849

Cardiac muscle is extremely sensitive to changes in loading conditions; the microgravity during space flight can cause cardiac remodeling and function decline. At present, the mechanism of microgravity-induced cardiac remodeling remains to be revealed. WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) is an important activator of pressure overload-induced cardiac remodeling by stabilizing disheveled segment polarity proteins 2 (DVL2) and activating the calcium-calmodulin-dependent protein kinase II (CaMKII)/histone deacetylase 4 (HDAC4)/myocyte-specific enhancer factor 2C (MEF2C) axis. However, the role of WWP1 in cardiac remodeling induced by microgravity is unknown. The purpose of this study was to determine whether WWP1 was also involved in the regulation of cardiac remodeling caused by microgravity. Firstly, we detected the expression of WWP1 and DVL2 in the heart from mice and monkeys after simulated microgravity using western blotting and immunohistochemistry. Secondly, WWP1 knockout (KO) and wild-type (WT) mice were subjected to tail suspension (TS) to simulate microgravity effect. We assessed the cardiac remodeling in morphology and function through a histological analysis and echocardiography. Finally, we detected the phosphorylation levels of CaMKII and HDAC4 in the hearts from WT and WWP1 KO mice after TS. The results revealed the increased expression of WWP1 and DVL2 in the hearts both from mice and monkeys after simulated microgravity. WWP1 deficiency alleviated simulated microgravity-induced cardiac atrophy and function decline. The histological analysis demonstrated WWP1 KO inhibited the decreases in the size of individual cardiomyocytes of mice after tail suspension. WWP1 KO can inhibit the activation of the DVL2/CaMKII/HDAC4 pathway in the hearts of mice induced by simulated microgravity. These results demonstrated WWP1 as a potential therapeutic target for cardiac remodeling and function decline induced by simulated microgravity.

16.
FASEB J ; 35(11): e21947, 2021 11.
Article En | MEDLINE | ID: mdl-34637552

Vascular remodeling is a prominent trait during the development of hypertension, attributable to the phenotypic transition of vascular smooth muscle cells (VSMCs). Increasing studies demonstrate that microRNA plays an important role in this process. Here, we surprisingly found that smooth muscle cell-specific miR-214 knockout (miR-214 cKO) significantly alleviates angiotensin II (Ang II)-induced hypertension, which has the same effect as that of miR-214 global knockout mice in response to Ang II stimulation. Under the treatment of Ang II, miR-214 cKO mice exhibit substantially reduced systolic blood pressure. The vascular medial thickness and area in miR-214 cKO blood vessels were obviously reduced, the expression of collagen I and proinflammatory factors were also inhibited. VSMC-specific deletion of miR-214 blunts the response of blood vessels to the stimulation of endothelium-dependent and -independent vasorelaxation and phenylephrine and 5-HT induced vasocontraction. In vitro, Ang II-induced VSMC proliferation, migration, contraction, hypertrophy, and stiffness were all repressed with miR-214 KO in VSMC. To further explore the mechanism of miR-214 in the regulation of the VSMC function, it is very interesting to find that the TGF-ß signaling pathway is mostly enriched in miR-214 KO VSMC. Smad7, the potent negative regulator of the TGF-ß/Smad pathway, is identified to be the target of miR-214 in VSMC. By which, miR-214 KO sharply enhances Smad7 levels and decreases the phosphorylation of Smad3, and accordingly alleviates the downstream gene expression. Further, Ang II-induced hypertension and vascular dysfunction were reversed by antagomir-214. These results indicate that miR-214 in VSMC established a crosstalk between Ang II-induced AT1R signaling and TGF-ß induced TßRI /Smad signaling, by which it exerts a pivotal role in vascular remodeling and hypertension and imply that miR-214 has the potential as a therapeutic target for the treatment of hypertension.


Angiotensin II/pharmacology , Gene Knockout Techniques/methods , Hypertension/chemically induced , Hypertension/metabolism , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Signal Transduction/genetics , Smad7 Protein/metabolism , Up-Regulation/genetics , Animals , Blood Pressure/drug effects , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Signal Transduction/drug effects , Up-Regulation/drug effects , Vascular Remodeling/genetics
17.
Eur Heart J ; 42(36): 3786-3799, 2021 09 21.
Article En | MEDLINE | ID: mdl-34347073

AIMS: 3' untranslated region (3' UTR) of mRNA is more conserved than other non-coding sequences in vertebrate genomes, and its sequence space has substantially expanded during the evolution of higher organisms, which substantiates their significance in biological regulation. However, the independent role of 3' UTR in cardiovascular disease was largely unknown. METHODS AND RESULTS: Using bioinformatics, RNA fluorescent in situ hybridization and quantitative real-time polymerase chain reaction, we found that 3' UTR and coding sequence regions of Ckip-1 mRNA exhibited diverse expression and localization in cardiomyocytes. We generated cardiac-specific Ckip-1 3' UTR overexpression mice under wild type and casein kinase 2 interacting protein-1 (CKIP-1) knockout background. Cardiac remodelling was assessed by histological, echocardiography, and molecular analyses at 4 weeks after transverse aortic constriction (TAC) surgery. The results showed that cardiac Ckip-1 3' UTR significantly inhibited TAC-induced cardiac hypertrophy independent of CKIP-1 protein. To determine the mechanism of Ckip-1 3' UTR in cardiac hypertrophy, we performed transcriptome and metabolomics analyses, RNA immunoprecipitation, biotin-based RNA pull-down, and reporter gene assays. We found that Ckip-1 3' UTR promoted fatty acid metabolism through AMPK-PPARα-CPT1b axis, leading to its protection against pathological cardiac hypertrophy. Moreover, Ckip-1 3' UTR RNA therapy using adeno-associated virus obviously alleviates cardiac hypertrophy and improves heart function. CONCLUSIONS: These findings disclose that Ckip-1 3' UTR inhibits cardiac hypertrophy independently of its cognate protein. Ckip-1 3' UTR is an effective RNA-based therapy tool for treating cardiac hypertrophy and heart failure.


Cardiomegaly , Heart Failure , 3' Untranslated Regions/genetics , Animals , Cardiomegaly/genetics , Cardiomegaly/prevention & control , Carrier Proteins , Heart Failure/genetics , In Situ Hybridization, Fluorescence , Mice , Mice, Inbred C57BL , Myocytes, Cardiac
18.
Front Physiol ; 12: 678863, 2021.
Article En | MEDLINE | ID: mdl-34211403

Different kinds of mechanical stimuli acting on the heart lead to different myocardial phenotypes. Physiological stress, such as exercise, leads to adaptive cardiac hypertrophy, which is characterized by a normal cardiac structure and improved cardiac function. Pathological stress, such as sustained cardiac pressure overload, causes maladaptive cardiac remodeling and, eventually, heart failure. Casein kinase-2 interacting protein-1 (CKIP-1) is an important regulator of pathological cardiac remodeling. However, the role of CKIP-1 in physiological cardiac hypertrophy is unknown. We subjected wild-type (WT) mice to a swimming exercise program for 21 days, which caused an increase in myocardial CKIP-1 protein and mRNA expression. We then subjected CKIP-1 knockout (KO) mice and myocardial-specific CKIP-1-overexpressing mice to the 21-day swimming exercise program. Histological and echocardiography analyses revealed that CKIP-1 KO mice underwent pathological cardiac remodeling after swimming, whereas the CKIP-1-overexpressing mice had a similar cardiac phenotype to the WT controls. Histone deacetylase 4 (HDAC4) is a key molecule in the signaling cascade associated with pathological hypertrophy; the phosphorylation levels of HDAC4 were markedly higher in CKIP-1 KO mouse hearts after the swimming exercise program. The phosphorylation levels of HDAC4 did not change after swimming in the hearts of CKIP-1-overexpressing or WT mice. Our results indicate that swimming, a mechanical stress that leads to physiological hypertrophy, triggers pathological cardiac remodeling in CKIP-1 KO mice. CKIP-1 is necessary for physiological cardiac hypertrophy in vivo, and for modulating the phosphorylation level of HDAC4 after physiological stress. Genetically engineering CKIP-1 expression affected heart health in response to exercise.

19.
Circulation ; 144(9): 694-711, 2021 08 31.
Article En | MEDLINE | ID: mdl-34139860

BACKGROUND: Without adequate treatment, pathological cardiac hypertrophy induced by sustained pressure overload eventually leads to heart failure. WWP1 (WW domain-containing E3 ubiquitin protein ligase 1) is an important regulator of aging-related pathologies, including cancer and cardiovascular diseases. However, the role of WWP1 in pressure overload-induced cardiac remodeling and heart failure is yet to be determined. METHODS: To examine the correlation of WWP1 with hypertrophy, we analyzed WWP1 expression in patients with heart failure and mice subjected to transverse aortic constriction (TAC) by Western blotting and immunohistochemical staining. TAC surgery was performed on WWP1 knockout mice to assess the role of WWP1 in cardiac hypertrophy, heart function was examined by echocardiography, and related cellular and molecular markers were examined. Mass spectrometry and coimmunoprecipitation assays were conducted to identify the proteins that interacted with WWP1. Pulse-chase assay, ubiquitination assay, reporter gene assay, and an in vivo mouse model via AAV9 (adeno-associated virus serotype 9) were used to explore the mechanisms by which WWP1 regulates cardiac remodeling. AAV9 carrying cardiac troponin T (cTnT) promoter-driven small hairpin RNA targeting WWP1 (AAV9-cTnT-shWWP1) was administered to investigate its rescue role in TAC-induced cardiac dysfunction. RESULTS: The WWP1 level was significantly increased in the hypertrophic hearts from patients with heart failure and mice subjected to TAC. The results of echocardiography and histology demonstrated that WWP1 knockout protected the heart from TAC-induced hypertrophy. There was a direct interaction between WWP1 and DVL2 (disheveled segment polarity protein 2). DVL2 was stabilized by WWP1-mediated K27-linked polyubiquitination. The role of WWP1 in pressure overload-induced cardiac hypertrophy was mediated by the DVL2/CaMKII/HDAC4/MEF2C signaling pathway. Therapeutic targeting WWP1 almost abolished TAC induced heart dysfunction, suggesting WWP1 as a potential target for treating cardiac hypertrophy and failure. CONCLUSIONS: We identified WWP1 as a key therapeutic target for pressure overload induced cardiac remodeling. We also found a novel mechanism regulated by WWP1. WWP1 promotes atypical K27-linked ubiquitin multichain assembly on DVL2 and exacerbates cardiac hypertrophy by the DVL2/CaMKII/HDAC4/MEF2C pathway.


Cardiomegaly/metabolism , Dishevelled Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Biomarkers , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cardiomegaly/diagnosis , Cardiomegaly/etiology , Cardiomegaly/prevention & control , Disease Models, Animal , Disease Susceptibility , Heart Failure/diagnosis , Heart Failure/etiology , Heart Failure/metabolism , Heart Failure/prevention & control , Histone Deacetylases/metabolism , Humans , Immunohistochemistry , MEF2 Transcription Factors/metabolism , Mice , Mice, Knockout , Protein Binding , Protein Stability , Repressor Proteins/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
20.
Theranostics ; 11(3): 1429-1445, 2021.
Article En | MEDLINE | ID: mdl-33391543

Rationale: Breast cancer preferentially develops osteolytic bone metastasis, which makes patients suffer from pain, fractures and spinal cord compression. Accumulating evidences have shown that exosomes play an irreplaceable role in pre-metastatic niche formation as a communication messenger. However, the function of exosomes secreted by breast cancer cells remains incompletely understood in bone metastasis of breast cancer. Methods: Mouse xenograft models and intravenous injection of exosomes were applied for analyzing the role of breast cancer cell-derived exosomes in vivo. Effects of exosomes secreted by the mildly metastatic MDA231 and its subline SCP28 with highly metastatic ability on osteoclasts formation were confirmed by TRAP staining, ELISA, microcomputed tomography, histomorphometric analyses, and pit formation assay. The candidate exosomal miRNAs for promoting osteoclastogenesis were globally screened by RNA-seq. qRT-PCR, western blot, confocal microscopy, and RNA interfering were performed to validate the function of exosomal miRNA. Results: Implantation of SCP28 tumor cells in situ leads to increased osteoclast activity and reduced bone density, which contributes to the formation of pre-metastatic niche for tumor cells. We found SCP28 cells-secreted exosomes are critical factors in promoting osteoclast differentiation and activation, which consequently accelerates bone lesion to reconstruct microenvironment for bone metastasis. Mechanistically, exosomal miR-21 derived from SCP28 cells facilitates osteoclastogenesis through regulating PDCD4 protein levels. Moreover, miR-21 level in serum exosomes of breast cancer patients with bone metastasis is significantly higher than that in other subpopulations. Conclusion: Our results indicate that breast cancer cell-derived exosomes play an important role in promoting breast cancer bone metastasis, which is associated with the formation of pre-metastatic niche via transferring miR-21 to osteoclasts. The data from patient samples further reflect the significance of miR-21 as a potential target for clinical diagnosis and treatment of breast cancer bone metastasis.


Bone Neoplasms/genetics , Bone Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Exosomes/genetics , Animals , Bone Density/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , Osteoclasts/pathology , Osteogenesis/genetics , RNA-Binding Proteins/genetics , Tumor Microenvironment/genetics
...